Scaling Effect on Unipolar and Bipolar Resistive Switching of Metal Oxides

نویسندگان

  • Takeshi Yanagida
  • Kazuki Nagashima
  • Keisuke Oka
  • Masaki Kanai
  • Annop Klamchuen
  • Bae Ho Park
  • Tomoji Kawai
چکیده

Electrically driven resistance change in metal oxides opens up an interdisciplinary research field for next-generation non-volatile memory. Resistive switching exhibits an electrical polarity dependent "bipolar-switching" and a polarity independent "unipolar-switching", however tailoring the electrical polarity has been a challenging issue. Here we demonstrate a scaling effect on the emergence of the electrical polarity by examining the resistive switching behaviors of Pt/oxide/Pt junctions over 8 orders of magnitudes in the areas. We show that the emergence of two electrical polarities can be categorised as a diagram of an electric field and a cell area. This trend is qualitatively common for various oxides including NiOx, CoOx, and TiO(2-x). We reveal the intrinsic difference between unipolar switching and bipolar switching on the area dependence, which causes a diversity of an electrical polarity for various resistive switching devices with different geometries. This will provide a foundation for tailoring resistive switching behaviors of metal oxides.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reversible transition of resistive switching induced by oxygen-vacancy and metal filaments in HfO2

In contrast to the irreversible transition of resistive switching induced by oxygen-vacancy filaments (VF) and metal filaments (MF) reported in the literature, this study reports coexistence and completely reversible transition of VF-and MF-induced resistive switching in a Ni/HfO 2 /SiO x /p +-Si device with three distinct and stable resistance states. In a dual filament model proposed, VF and ...

متن کامل

Investigation of resistive switching in anodized titanium dioxide thin films

In this work, TiO2 nanostructures were grown on titanium thin films by electrochemical anodizing method. The bipolar resistive switching effect has been observed in Pt/TiO2/Ti device. Resistive switching characteristics indicated the TiO2 nanotubes are one of the potential materials for nonvolatile memory applications.  Increasing anodizing duration will increase nanotube lengths which itself c...

متن کامل

Filament Geometry Induced Bipolar, Complementary, and Unipolar Resistive Switching under the Same Set Current Compliance in Pt/SiOx/TiN

The decidedly unusual co-occurrence of bipolar, complementary, and unipolar resistive switching (BRS, CRS, and URS, respectively) behavior under the same high set current compliance (set-CC) is discussed on the basis of filament geometry in a Pt/SiOx/TiN stack. Set-CC-dependent scaling behavior with relations Ireset ~ R0(-α) and Vreset ~ R0(-β) differentiates BRS under low set-CC from other swi...

متن کامل

Resistive switching memories based on metal oxides: Mechanisms, reliability and scaling

With the explosive growth of digital data in the era of the Internet of Things (IoT), fast and scalable memory technologies are being researched for data storage and data-driven computation. Among the emerging memories, resistive switching memory (RRAM) raises strong interest due to its high speed, high density as a result of its simple two-terminal structure, and low cost of fabrication. The s...

متن کامل

Thermophoresis/diffusion as a plausible mechanism for unipolar resistive switching in metal–oxide–metal memristors

We show that the SET operation of a unipolar memristor could be explained by thermophoresis, or the Soret effect, which is the diffusion of atoms, ions or vacancies in a steep temperature gradient. This mechanism explains the observed resistance switching via conducting channel formation and dissolution reported for TiO2 and other metal-oxide-based unipolar resistance switches. Depending on the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013